Indian Statistical Institute, Bangalore

B. Math. Second Year Second Semester - Graph Theory Duration: 3 hours

Back Paper Exam

Date : July 14, 2015

Max Marks: 100

- 1. If G a vertex minimal imperfect graph then show that $\chi(G) = w(G) + 1$ and $\chi(G \setminus x) = w(G)$ for all x in V(G). [15]
- 2. If G_1, G_2 are two graphs with vertex sets V_1, V_2 respectively, then their cartesean product $G_1 \times G_2$ is the graph with vertex set $V_1 \times V_2$ such that (x_1, y_1) and (x_2, y_2) are adjacent in $G_1 \times G_2$ iff either $x_1 = x_2$ and y_1, y_2 are adjacent in G_2 or $y_1 = y_2$ and x_1, x_2 are adjacent in G_1 . Show that $\chi(G_1 \times G_2) = \max(\chi(G_1), \chi(G_2))$. [20]
- 3. For $n \ge 2$, the Mobius ladder L_n is the graph with 2n vertices $x_1, ..., x_n, y_1, ..., y_n$ and 3n edges $\{x_i, y_i\}(1 \le i \le n), \{x_i, x_{i+1}\}, \{y_i, y_{i+1}\}(1 \le i < n)$ and $\{x_n, y_1\}, \{y_n, x_1\}$. Show that L_n is not a matchstick graph. That is, it is not possible to draw it on the plane with vertices represented by 2n distinct points and edges represented by straight line segments of unit length. [20]
- 4. If ϑ, e, f are the number of vertices, edges and faces of a planar graph, then prove Euler's formula $\vartheta - e + f = 2$. Hence show that $e \leq 3(\vartheta - 2)$ when $\vartheta \geq 3$. Give an example of a six vertex planar graph attaining equality here. [20]
- 5. If G is a connected graph with diameter 2 and girth 5, then find the possible values of its degree. Show that there is a unique such graph of degree 3. [20]